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The motion of a drilling structure is studied in torsion. The stability of the stationary
solution is determined by the direct method of Liapounov, supplemented with results for the
linearized method. The stability criterion is "rmly based on the form of the boundary
condition linked to the rock destruction process. This rock/bit interaction function can be
deduced using studies on rock mechanics, based on yield design formalism. Assuming
a quasi-static axial evolution, numerical simulations illustrate the instability of the
stationary solution: the bit motion can converge on a limit cycle, often called stick}slip. The
beam therefore evolves as a complex cone-shaped limit surface. A simple
two-degrees-of-freedom system is now considered in both axial and torsional directions, to
quantify the quasi-static axial assumption. The instability of the stationary solution is
con"rmed by the linearized method for the undamped system with the postulated boundary
conditions. Even for small damping values the same result is achieved. Even though a limit
cycle appears in the axial plane (small amplitude), stick}slip can be described adequately by
considering a quasi-static axial evolution.

( 2000 Academic Press
1. INTRODUCTION

Drill string vibrations are generally quite complex. Axial, lateral and torsional vibrations
are present and sometimes coupled. Phenomena such as bit bouncing, whirling or stick}slip
have all been shown to occur. A full simulation covering all relevant phenomena is not
reasonably practical and authors generally study vibration mechanisms individually. The
main di$culty is modelling the boundary conditions especially the rock/bit interaction
which cannot be determined precisely in complex bit kinematics (for instance in the case of
lateral vibrations). Torsional drill string vibrations, also known as stick}slip, contribute to
drillpipe fatigue and are detrimental to bit life. They can also a!ect the rate of penetration
(ROP) and the instantaneous e$ciency of the installation, and occur for more than 50% of
the total time of a classical rig step [1]. The purpose of this paper is to consider this parasitic
non-linear phenomenon, using knowledge of rock mechanics for identi"cation of the
boundary condition. The study is limited to polycrystalline diamond compact (PDC) bits
although some analogies to roller bits could be pertinent.

Authors often favour a detailed description of the drill string and restrict the boundary
condition to a harmonic [2] or a constant [3] loading. It is shown in this paper that the
rock/bit interaction, linked to the rock destruction process, is a non-linear function, which
conducts to an autonomous dynamic system. With the type of boundary conditions
postulated, Belyaev and Brommundt [4] proposed a stability study for a linearized system
with a surface motor, resulting in only the necessary instability conditions. Dunayevsky
0022-460X/00/220235#20 $35.00/0 ( 2000 Academic Press



236 N. CHALLAMEL
and Abbassian [5] gave stability conditions for a linearized one-degree-of-freedom system.
The present study de"nes the stability conditions for the stationary solution of the real
continuous medium, using the direct method of Liapounov. The linearized motion is also
considered to complement the stability investigation. Finally, the induced non-linear
phenomenon is illustrated by numerical simulations.

2. STATEMENT OF THE PROBLEM

The drillpipe is considered as a beam in torsion. A lumped inertia I
B

is chosen to
represent the bottomhole assembly. A damping b, which includes the viscous and structural
damping, is assumed along the structure. The speed at the surface (x"0) is restricted to
a constant value X, and the other extremity (x"¸), which symbolizes the bit, is subjected to
a torque u, which is a function of the bit speed (this point will be justi"ed later). The
mechanical system is described by the following equations [6]:
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where u (x, t) is the angle of rotation, I is the inertia, G is the shear modulus, J the
geometrical moment of inertia.

The existence and uniqueness of the solution are assumed to be obtained for all the initial
conditions. The stationary solution u0(x, t) of this system is
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The change of variable v(x, t)"u(x, t)!u0(x, t) leads to an equivalent autonomous system,
for which the function v0(x, t),0 is a solution:

GJ
L2v

Lx2
(x, t)!I

L2v

Lt2
(x, t)!b

Lv

Lt
(x, t)"0, x3D"[0;¸],

(3)

v (0, t)"0, GJ
Lv

Lx
(¸, t)#I

B

L2v

Lt2
(¸, t)"u (X)!uAX#

Lv

Lt
(¸, t)B.

The end x"0 is now "xed and the wave propagation equation has not changed. The
stability of the trivial solution v0(x, t) of equation (3) is equivalent to the stability of u0(x, t) of
equation (1).

3. STABILITY ANALYSIS OF THE CONTINUOUS MEDIUM

3.1. DIRECT METHOD OF LIAPOUNOV

The Hilbert space H1
0
(D)]¸2(D), which includes the inner product associated with the

norm energy H, is introduced:
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STABILITY OF A DRILLING STRUCTURE 237
Di!erentiating with respect to t that follows from equation (4)
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An integration by parts of the "rst term leads to
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The introduction of boundary conditions and wave equation gives
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Hence, u monotonously increasingN
dH

dt
)0. (8)

H is a Liapounov functional by conception. The application of Liapounov's theorem
(extended by Movchan [7, 8] for continuous media) results in:

u monotonously increasing NAv (x, t),
Lv

Lt
(x, t)B"(0, 0) stable. (9)

The stability is naturally relative to the metric used; that is, to the total energy norm. When
u is decreasing, a general conclusion is not possible. The damping and decrease of u have
the opposite e!ect in term of stability (see equation (7)).

For the undamped system (b"0), only the rock}bit interaction function u governs the
stability of the stationary solution. If u is strictly increasing, the stationary solution is
asymptotically stable. This result can be shown, using the Lassale invariance principle
[9, 10]. Trajectories of the system tend to the largest invariance set contained in the
subspace of constant energy (HQ "0). This subspace is determined by an &&over conditional''
system which allows only one solution v0(x, t). The stability condition follows:

u monotonously strictly increasing N(0, 0) is asymptotically stable. (10)

The attraction basin is then the sole functional space. From a more general point of view,
it is su$cient that u is increasing and is bijective around X to ensure the stability. If u is
a constant function, the problem is reduced to the particular case of a "xed beam with a free
end, for which the trivial solution is stable. Finally, if u is decreasing, the eigenvalues of the
linearized system can be calculated explicitly when I

B
vanishes, and all have a positive real

part. Although the eigenvalue problem cannot be analytically solved in the general case, the
previous result let us think that the stationary solution is still unstable for all values of I

B
.
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238 N. CHALLAMEL
3.2. LINEARIZED SYSTEM

Considering the linearized undamped system without lumped inertia (b"I
B
"0),
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The solution is sought in the form v (x, t)"t (x)ejt.
Using the wave equation, v(x, t) can be written as
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with c"JGJ/I, torsional wave celerity and j3C.
The boundary conditions lead to the characteristic system

C
1
#C

2
"0,

(12)

jJIGJ (C
1
ejJI/GJL#C

2
e~jJI/GJL)"!u@(X)j (C

1
ejJI/GJL#C

2
e~jJI/GJL).

This system allows a non-trivial solution if
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Now set j"a#ib, where (a, b)3R2.

The following equality must be satis"ed:
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STABILITY OF A DRILLING STRUCTURE 239
As a singular property, the real spectral distribution is invariant with the imaginary part.
For the well-known case u@(X)"0, a vanishes and the natural pulsations are

(2k#1) (n/2¸) JGJ/I . The sign of u@(X) governs the sign of a. When u is increasing, the
real part of eigenvalues is negative (the result of stability is again found, but only for small
perturbations). When u is decreasing, the real part of eigenvalues is positive and the
stationary solution is unstable. The motion can be expressed by
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The series converge on the solution studied for the following generalized coordinate C
k
. The

following initial conditions can be introduced:
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The general solution of the complex system (15) can easily be proposed when an additional
condition (a

k
"0 for instance) is imposed. In the same way, it follows that
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The initial rotation speed condition leads to the constraint
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Figure 1. Sensitivity of the a parameter to u.

240 N. CHALLAMEL
Numerical calculation should be used for the more general case. Using the convergence
property of v(x#ct, 0) and v(x!ct, 0), the convergence of v(x, t) is immediately obtained.
As a consequence, it follows that

lim
t?= A

ln Ev(x, t)E
t B"a. (20)

Here a symbolizes the evolution order of the perturbed motion. Figure 1 shows a graphical
representation of a, de"ned in equation (20), versus u@(X). The function a is an impair

function, de"ning it on the whole plane. A singularity appears when Du@ (X) D"JIGJ. This
phenomenon, which should be attenuated by damping, can be likened to an autonomous
resonance. Nevertheless, Du@ (X) D is generally small in drilling and only the "rst part of the
graph is of signi"cance.

When I
B

cannot be neglected, the eigenvalues cannot be explicitly calculated. It is
necessary to solve a transcendental complex equation. The direct method of Liapounov is
then especially useful in this more realistic case.

4. ROCK/BIT INTERACTION FUNCTION

In stick}slip conditions, for su$ciently slow conditions (the stick}slip frequency is lower
than the fundamental natural frequency as will be seen later), the interaction function can be
described with the mean values of the instantaneous parameters during one revolution.

To quantify this function, the rock deformability is now considered. The drilling tool is
composed of many elementary cutters, symbolized by rigid wedges. The rock reaction is
quanti"ed, using yield design formalism, which surrounds the maximum force potentially
JSV 19992811



STABILITY OF A DRILLING STRUCTURE 241
bearable by the rock structure in a given kinematics [11]. The analysis is conducted in
quasi-static outline in plane deformations. Tests performed in the laboratory show the
independence of maximal forces with regard to speed over a range representative of drilling
speeds. The maximal forces are theoretically proportional to the cutting area, although
experimental limits of such a consideration have been shown [12, 13]. The proportionality
coe$cient, shown as e, is called the speci"c energy. e is a function of the Coulomb criterion
and signi"es the rock cutting hardness, for a given kinematics. The mean force is deduced by
an empirical factor and the chipping cycle induced at this level is neglected. The integration
of these local forces gives the global interaction function.

Now consider the axial bit position X and the torsional angle >. u (¸, t), introduced
earlier is denoted as > here for the purpose of simpli"cation. Assuming a su$ciently slow
evolution of parameters (XQ , >0 ) during a period of bit revolution, the global interaction
function can be approximated by a simple autonomous form. It is necessary for the number
of bit revolutions during a stick}slip phase (ratio between X and the fundamental pulsation)
to be su$cient to ensure the validity of this analytical expression. This assumption becomes
pertinent when the ratio is greater than two; certain bit symmetrical considerations weaken
the assumption.

The torque on the bit u, resulting from the integration of local torques on the bit pro"le
of R radius [14], is expressed by the bi-variable function

u(XQ , >Q )"z (XQ , >Q )e
R2

2
. (21)

The coupling law z (depth of cut per revolution) governs the qualitative response of the
system. This function is de"ned by

z (XQ , >Q )"2n
XQ
>Q

. (22)

In an equivalent way, the torque can be obtained by

u (XQ , >Q )"neR2
XQ
>Q

. (23)

The kinematic change for very slow rotation speed nevertheless de"nes a mode of
indentation of rock (di!erent from the classical functioning cutting mode), resulting in
a "nite torque when the rotation speed tends to zero (the bit axial speed is always positive
for this bit type [15]). The hyperbolic function (23) is then corrected by an exponential
decreasing law. The inverse functioning of the bit for negative rotation speed is taken into
account. The interaction function can be written as

u (XQ , >Q )"fXQ e~aY0 if >Q *0,
(24)

u(XQ , >Q )"!fXQ if >Q (0.

f denotes the ability of the rock to be cut (a function of e and R). The weight on bit (WOB) is
approached analytically, using the same reasoning which led to the torque determination.
The resulting linear relation between the torque and the bit is given by

WOB(XQ , >Q )"ku(XQ , >0 ). (25)
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242 N. CHALLAMEL
k depends on the bit geometry (bit radius, rake angle) and is easily obtained for a #at bit
[14].

5. STICK}SLIP SIMULATION

5.1. BIT MOTION

As a "rst step, the axial evolution is assumed to be quasi-static, or more precisely, the
weak variation of X0 around its mean value is assumed to have no major in#uence on the
torsion evolution, assuming that

XQ "ROP. (26)

A coupled numerical study will con"rm this hypothesis. Moreover, it does not contradict
the small values of axial acceleration measured on rig for this bit [15].
The univariable u function (linked with the Section 3) is now restricted to

u(ROP,>Q )"u0e~a>Q if >0 *0

u(ROP,>Q )"!u0 if >Q (0
with u0"fROP. (27)

This convex decreasing form is observed during drilling (see references [15}17] for
instance). It can generate the instability of the stationary motion.

Numerical simulations illustrate the induced phenomenon with the "nite di!erence
method (simulation of equation (1)). Twenty elements mesh the structure and the equation
of motion is solved with the fourth order Runge}Kutta algorithm. The initial speed is equal
to X and the initial rotation is chosen to be equal to zero for all points, thus a!ecting the
stationary solution. The drillstring is a pipe made of steel (density o, Young's modulus
Figure 2. Asymptotical stability*b"0)5 N s.

JSV 19992811



Figure 3. Stick}slip simulation*undamped system.

Figure 4. Stick}slip simulation*b"0)1 N s.

STABILITY OF A DRILLING STRUCTURE 243
E and the Poisson ratio l). Its geometry is de"ned by its external diameter D
ext

and internal
diameter D

int
. The representative values, chosen for the simulation, are

¸"1000m, o"8000Kg/m3, E"2]105MPa, l"0)3, D
ext
"0)127m, D

int
"0)079m,

I
B
"89 Kg m2, X"1 rad/s, u0"1000 Nm, a"0)1 s.
JSV 19992811



244 N. CHALLAMEL
Figures 2}4 represent the trajectory in the bit space phase with the relative variable v, for
di!erent damping values. The initial bit speed is zero in this plane, which corresponds to the
extremity of the trajectory on the right-hand side of the "gures. The stick phase was
numerically treated by "xing the bit speed (this procedure is detailed in next section). The
trajectory follows a global rotation motion clockwise. For a large damping value, the
motion is asymptotically stable and trajectories converge on the stationary solution
(Figure 2).

A structural perturbation (an increase of a, which grows with the rock hardness or
a decrease of b) can generate a bifurcation of the system [17]. At least one of the real parts
of the eigenvalues crosses the imaginary axis and the motion converges on stick}slip
(Figures 3 and 4).

The minimal speed is zero (absolute variable u) and the maximal speed is greater than
twice X. For the undamped system (Figure 3), trajectories are ruled by initial conditions and
do not converge on the limit cycle (the attractor seems to be almost-periodical). The motion
is simulated over 20 s, in this case corresponding to a few cycles. The attractor changes with
some damping (Figure 4) and becomes a limit cycle. The stick}slip period is less than the
natural fundamental frequency (0)52 Hz in the example instead of 0)53 Hz).

5.2. BEAM MOTION

In this "nal case (b"0)1 Ns), the extremity of the beam describes a limit cycle well
known in other dynamical systems. In reality, the beam converges on a cone-shaped limit
surface. A three-dimensional view is shown in Figure 5. This surface is projected on a plane
perpendicular to the beam neutral axis (stationary solution), for the di!erent discretization
Figure 5. Three-dimensional view of the limit surface.
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Figure 6. Projected limit surface.
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points (Figure 6). The bit limit can be recognized with the typical stick phase in Figure 6.
The propagation of the sudden bit stick phase can also be seen. In particular, some beam
points above the bit reach negative speed (in terms of u variable). The amplitude of limit
cycles tends to decrease while going up to the surface, until the limit cycle becomes a point
at the surface. The complex form of each of these cycles (and in a global way of the limit
surface) depends on the structural parameter chosen.

The beam motion has been photographed each 0)1 s, to cover the limit surface with about
20 pictures. Figure 7 represents the beam rotation and Figure 8 the beam rotation speed.

The arrows indicate the direction of evolution of the beam. As the limit surface does not
display any axial symmetry, it has been necessary to represent the beam motion in both
directions. This asymmetry is especially marked for the beam rotation speed. During
the stick phase, the bit rotation speed is "xed, generating a spectacular wave in the beam. It
can also be noticed that rotation is not linear along the beam, as opposed to the static
solution.

6. COUPLED MOTION STUDY

The drilling structure is modelled in the torsional and axial directions to verify the
previous assumption. Any static or dynamical buckling phenomenon is ignored (even if
BHA presence decreases such a risk) and an axial hypothesis is quanti"ed by this new
dynamical model. This subject is rarely considered in the literature. This type of coupling
JSV 19992811



Figure 7. Evolution of the beam rotation of each 0)1 s during one cycle.
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was studied with a harmonic loading [18] applied to roller cone bits. A mesh of the
bottomhole pro"le, to calculate the cutting areas at any time, did not succeed in
determining any clear tendency [19]. Moreover, this total numerical study exhibits the
constancy of the bit axial speed during a large range of stick}slip. The third part has shown
in only a torsional study the major role of the rock/bit interaction in the drilling structure
dynamics.

6.1. REDUCTION TO A ONE-DEGREE-OF-FREEDOM SYSTEM

The drillpipe is initially only considered in torsion. A simpli"ed one-degree-of-freedom
model is proposed to evaluate the pertinence of such a simpli"cation. The stick}slip
frequency is only a little lower than the fundamental natural frequency of the continuous
system. The reduction is studied for the linearized system at the "rst mode and the
non-linear correspondence will be justi"ed with a numerical comparison. The Ritz method
[20, 21] gives the approximation of the characteristics of the "rst mode. It is much better the
rotation of the "rst mode becomes linear (I

B
great before I]¸).
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Figure 8. Evolution of the beam rotation of each 0)1 s during one cycle.
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A linear interpolation of the "eld displacement along the beam is assumed. This gives
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where m
1

is the mass, k
1

the sti!ness and c
1

the modal damping.
The motion is expressed by
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JSV 19992811



Figure 9. Stick}slip*uncoupled case of the one-degree-of-freedom system.
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The change of variable adopted is

y">!Xt#
u (ROP,X)

k
1

#

c
1
X

k
1

. (30)

The new system, which admits the trivial solution, can be expressed by

m
1
yK#c

1
yR #k

1
y"u(ROP, X)!u(ROP,X#yR ). (31)

The following initial conditions have been chosen to link this part with the previous one:
y
0
"0)57 rad. The initial speed y5

0
is equal to zero (similar to the parameters given in

Section 5). The fourth order Runge}Kutta algorithm has been used to solve the non-linear
problem and the classical numerical treatment of the stick phase has been proposed to
describe this speci"c phenomenon. During the stick phase, an additional condition is given
by the value of the speed equal to!X. The torque is liberated and then equal to

u (ROP, 0)"u (ROP,X)#cX!ky. (32)

A comparison of the motion of the continuous system with the motion of the associated
one-degree-of-freedom system is then proposed. The classical stick}slip phenomenon can be
seen in Figure 9. A discontinuity in the slope appears when the bit begins to stick, in
contrast to the end of the stick phase. The limit cycle simulated is very similar to the limit
cycle obtained with the total beam discretization (Figure 4). Only the transitory phase is
signi"cantly di!erent. A frequential comparison quanti"es the validity of the simpli"ed
approach. The Ritz method slightly overestimates the fundamental natural frequency of the
real system (0)54 Hz instead of 0)53 Hz). The limit cycle frequency (0)52 Hz in both cases) is
just a little lower than the natural frequency of the associated system. The simpli"ed method
is thus appropriate for the description of the bit motion in stick}slip con"guration (the wave
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propagation nature of the dynamical system is naturally erased). However for the
undamped case for instance, this analogy is less appropriate.

6.2. STATEMENT OF THE PROBLEM

The coupled motion is now considered. The axial modal characteristics are identi"ed as
being in torsion (the nature of equation which rules the axial motion is identical to the other
direction). As for the torsion motion, a constant axial speed ROP is imposed at the surface
and the bit is subjected to a weight which is a function of the bit speeds. The dynamical
system is de"ned by

m
0
XG #c

0
XQ #k

0
(X!ROPt)"!WOB(XQ , >Q ),

m
1
>G #c

1
>Q #k

1
(>!Xt)"!u (XQ ,>Q ).

(33)

The same change of variable is adopted:
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WOB(ROP,X)

k
0

#

c
0
ROP

k
0

y">!Xt#
u (ROP,X )

k
1

#

c
1
X

k
1

.

(34)

According to equation (25) in the previous section,

m
0
xK#c

0
xR #k

0
x"ku(ROP, X)!ku (ROP#xR , X#yR ),

m
1
yK#c

1
yR #k

1
y"u (ROP,X)!u (ROP#xR , X#yR ).

(35)

6.3. STABILITY ANALYSIS

Considering the interaction function parameters

c"
Lu(ROP#xR ,X#yR )

LxR K
(0,0)

,

d"
Lu(ROP#xR , X#yR )

LyR K
(0,0)

,

the linearization of equation (35) leads to

m
0
xK#c

0
xR #k

0
x"k (!cxR !dy5 ),

m
1
yK#c

1
yR #k

1
y"!cxR !dy5 ,

(36)
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Figure 10. Stick}slip*coupled case.
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or, in the same way, to

A
xK

xR
yK

yR B"A
!

(c
0
#ck)

m
0

!

k
0

m
0

!

dk
m

0

0

1 0 0 0

!

c
m

1

0 !

(c
1
#d)

m
1

!

k
1

m
1

0 0 1 0
B A

xR
x

yR
y B .

The study of the stability of the linearized motion enables the stability of the non-linear
system for su$ciently small perturbations to be investigated using the Liapounov theorem.
The characteristic polynomial of the undamped system is

P(j)"j4#a
1
j3#a

2
j2#a

3
j#a

4
,

where

a
1
"

ck
m

0

#

d
m

1

, a
2
"

k
0

m
0

#

k
1

m
1

, a
3
"

k
0

m
0

d
m

1

#

k
1
ck

m
0
m

1

, a
4
"

k
0
k
1

m
0
m

1

.

The sign of the real part of the polynomial roots is given by Hurwitz criterion. Especially,

K
a
1

a
3

0

1 a
2

a
4

0 a
1

a
3
K" cdk

m
0
m

1
A

k
0

m
0

!

k
1

m
1
B
2
.
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Figure 11. Limit cycle in the axial space.
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A necessary stability condition is given by the positivity of this last coe$cient. In other
words, if c and d have opposite signs, the motion is unstable. This is the case of the rock/bit
interaction function u de"ned previously in equation (24). In particular, equation (36) shows
the axial instability. In the more general damped case, the damping is su$ciently small to
ensure the validity of the previous conclusion. As will be seen later, this instability is not in
contradiction to the quasi-static axial evolution assumption for torsional motion, which is
justi"ed by the small oscillations in this axial direction.

6.4. NUMERICAL SIMULATION OF THE COUPLED MOTION

The following parameters, in accordance with the precedent simulation are chosen:

m
0
"37 278 kg, c

0
"16 100 kg/s, k

0
"1)55]106 kg/s2, ROP"0)01 m/s,

m
1
"147 kgm2, c

1
"33 kgm2/s k

1
"1670 kg m2/s2, X"1 rad/s,

f"1]105 kg m/s, k"1m~1, a"0)1 s.

The initial conditions are the same as for the uncoupled system and it is assumed that the
axial system is initially in its stationary position.

The trajectory converges to a limit cycle, very similar in the torsion phase plane to the one
obtained for the uncoupled motion (the stick}slip frequency is equal to 0)52 Hz again). Only
the transitory phase changes (Figure 10). The axial speed evolution has small amplitude,
lower in this case than 10% of the mean rate of penetration. Axial motion also describes
a limit cycle (Figure 11). This cycle would in fact seem like a point if the scale were to be
adapted to the mean value ROP, as is the torsion scale with X.
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Figure 12. Same limit cycle in the axial space*small perturbation.

Figure 13. Limit cycle in the speed space.
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Simulations with only small perturbation show the particular phenomenon of the limit
cycle (Figure 12). The initial conditions are the same as for the stationary solution except for
y5
0

which is equal to 0)01 rad/s. The ratio between the fundamental axial and torsion
frequency is equal to wave speed ratio when the punctual inertia can be neglected. In the
latter case, this ratio is equal to [2 (1#l)]1@2, equal to 1)6 with the Poisson ratio retained
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(the true frequency ratio is 1)9 in the example). The natural axial frequency is greater than
the torsion one, and often in the order of twice the natural torsion frequency.

In the simulated case, the fundamental frequency of the axial limit cycle is the same as the
stick}slip cycle (torsional plane) but the natural axial frequency is also involved creating
two loops in this axial phase plane (related to the ratio between the natural and torsional
frequencies). This particular coupling is shown in the phase plane. The limit cycle projected
in the speed plane looks like a G clef in music (Figure 13). This plane is important
experimentally because these &&state'' variables are easier to measure than the &&position''
variables. Such a coupling could be then appreciated during tests.

The trivial solution is asymptotically stable for soft rock (1"1]104 kgm/s for instance).
On the contrary, it can be seen numerically that the tendency is accentuated for harder
rocks (the stick}slip period growths). Drillers observe such behaviour on rig, when they
encounter this dysfunction only in hard formations. The axial boundary conditions have
been replaced by a constant weight at the surface, in order to quantify its in#uence on the
evolution of the system. The variation of x5 is of the same order as previously and the
stick}slip evolution has not changed. This boundary condition does not play a major role
on the global evolution during stick}slip. Finally, simulations indicate that drillstring
length tends to increase the coupling, measured by variation of the axial speed with other
identical parameters.

7. CONCLUSION

An analytical study has been proposed to characterize the stability of a drilling structure,
using the direct method of Liapounov and the linearized method. The stability criterion
depends strongly on the form of the rock/bit interaction, linked to the rock destruction
process. Simulations illustrate the induced phenomenon. The bit motion can converge
towards stick}slip, a typical limit cycle observed during drilling. This phenomenon takes the
form of a cone-shaped limit surface concerning the beam, which can generate detrimental
fatigue on drillpipes. The stick}slip phenomenon, often noticed in drilling mechanics, has
been modelled using the knowledge of rock mechanics. Drilling stick}slip behaves for PDC
bits with very small variation of axial speed and most often justi"es the use of an uncoupled
model in torsion [17]. The simultaneous use of non-linear dynamics and rock mechanics
must be completed to generalize these results to lateral evolution.
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10. A. HARAUX 1991 Systèmes dynamiques dissipatifs et applications. Paris: Masson.
11. N. CHALLAMEL 1998 Revue Franiaise de GeH otechnique 84. Calcul à la rupture appliqueH à la coupe
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